A doubly stochastic matrix is a square matrix in which both the rows and columns add up to 1.
In other words, a matrix A = [aij] is said to be doubly stochastic if:
Since the rows and columns of a doubly stochastic matrix sum to 1, each entry in the matrix represents the probability of transitioning from one state to another in a Markov chain.
Doubly stochastic matrices have a number of interesting properties and applications in various fields including probability theory, optimization, and economics. They are also closely related to the concept of doubly stochastic processes.
In addition, a doubly stochastic matrix can be considered as a permutation matrix multiplied by a diagonal matrix with all positive entries. This relationship is useful in analyzing the properties of doubly stochastic matrices and their manipulation in various mathematical operations.
Ne Demek sitesindeki bilgiler kullanıcılar vasıtasıyla veya otomatik oluşturulmuştur. Buradaki bilgilerin doğru olduğu garanti edilmez. Düzeltilmesi gereken bilgi olduğunu düşünüyorsanız bizimle iletişime geçiniz. Her türlü görüş, destek ve önerileriniz için iletisim@nedemek.page